

Comparison of Survival among Older Adults with Kidney Failure Treated versus Not Treated with Chronic Dialysis

1Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada 2Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada 3Faculty of Nursing, University of Calgary, Alberta, Canada

INTRODUCTION

Treatment for older adults with kidney failure generally includes chronic dialysis or non-dialysis care.

Prior studies comparing survival among dialysis and non-dialysis care have been limited by the following ^{1,2}:

- Single-center studies managed by nephrology teams
- Considerable differences in baseline characteristics
- Potential for lead-time and immortal time biases

AIM

To compare time to all-cause mortality among older adults with kidney failure treated versus not treated with chronic dialysis, addressing treatment-selection, lead-time, and immortal time biases

METHODS

- We used linked administrative and laboratory databases to identify adults aged ≥65 in Alberta with kidney failure from 2002-2012
- Kidney failure defined by ≥2 consecutive outpatient eGFR measurements of <10 ml/min/1.73m² spanning a period of ≥90 days (figure 1)
- Cox regression modeling with propensity score matching to account for baseline demographic and comorbid differences
- A time-varying exposure was used to address immortal time bias

<u>H TAM-THAM¹, RR QUINN^{1,2}, RG WEAVER², J ZHANG², C THOMAS², K KING-SHIER^{1,3}, K FRUETEL² and BR HEMMELGARN^{1,2}</u>

RESULTS

- 838 patients met cohort inclusion criteria (figure 2)
- 396 (47.3%) were included in the final propensity score matched cohort
- The balance of covariates between the two groups improved after propensity score matching (table 1)
- The mean standardized differences in covariates decreased from 22.5% (range 0.2 to 99.9%) before matching to 2.8% (0.0 to 9.1%) after matching, achieving balance across all included covariates (figures 3 and 4)
- Mean age 80.4, 44.7% male, mean eGFR 7.8 ml/min/1.73m²

 Table 1. Baseline characteristics

	Entire cohort (N=838)			After propensity score matching (N=396)						
	Dialysis	Non-dialysis	Standardized	Dialysis	Non-dialysis	Standardized				
Characteristic	N=500	N=338	difference (%)	N=198	N=198	difference (%)				
Male	273 (54.6)	134 (39.6)	30.3	88 (44.4)	89 (45.0)	-1.0				
Mean age (SD)	76.3 (6.4)	83.2 (7.2)	-99.9	80.6 (6.3)	80.2 (6.8)	5.7				
Mean eGFR at index (SD)	7.8 (1.4)	7.7 (1.6)	2.6	7.8 (1.5)	7.8 (1.4)	-0.9				
Comorbidities										
Dementia	26 (5.2)	82 (24.3)	-55.8	24 (12.1)	20 (10.1)	6.4				
Myocardial infarction	74 (14.8)	68 (20.1)	-14.0	34 (17.2)	33 (16.7)	1.3				
Diabetes	273 (54.6)	173 (51.2)	6.8	102 (51.5)	101 (51.0)	1.0				
Hypertension	482 (96.4)	309 (91.4)	20.9	185 (93.4)	184 (92.9)	2.0				

STRENGTHS & LIMITATIONS

- We used a population-based cohort, and were able to account for clinically important baseline characteristics
- Using an eGFR-based algorithm to identify does not fully address lead-time bias, and potential for misclassification bias

CONCLUSIONS

- Among older adults with kidney failure defined by sustained eGFR <10 ml/min/1.73m², dialysis may confer a reduced risk of all-cause mortality within the first 3 years of treatment
- The information generated about survival regarding early mortality may support shared treatment decision-making within nephrology and primary care settings when managing older adults with kidney failure

- The results were robust in a number of sensitivity analyses:
- Excluding patients not referred to a nephrologist

Table 2 Hazard ratios of mortality from primary and sensitivity analyses

Table 2. Hazara radios of mortanty nom primary and scholarly analyses											
PS-matched cohort		Non-dialysis	Ν	HR	95% CI	p-value					
0-3 years of follow-up											
Full PS-matched cohort	198	198	396	0.55	0.41-0.74	<0.001					
Exclude late referral to nephrologist		182	364	0.53	0.39-0.73	<0.001					
Exclude non-referred to nephrologist	186	186	372	0.60	0.44-0.81	0.001					
Exclude improved kidney function post-cohort entry	193	193	386	0.49	0.36-0.68	<0.001					
≥3 years of follow-up											
Full PS-matched cohort		198	396	2.30	1.11-4.81	0.026					
Exclude late referral to nephrologist		182	364	1.96	0.89-4.32	0.096					
Exclude non-referred to nephrologist	186	186	372	3.53	1.52-8.21	0.003					
Exclude improved kidney function post-cohort entry	193	193	386	2.17	1.00-4.71	0.050					

REFERENCES

- L. Foote C, Kotwal S, Gallagher M et al. Survival outcomes of supportive care versus dialysis therapies for elderly patients with end-stage kidney disease: A systematic review and meta-analysis. Nephrol Carlton Vic. 2016 Mar;21(3):241– 53.
- . Hole B, Tonkin-Crine S, Caskey FJ et al. Treatment of End-stage Kidney Failure without Renal Replacement Therapy. Semin Dial. 2016 Nov;29(6):491–506.

• Compared to non-dialysis, there was a reduction in risk of death among those treated with dialysis within the

• However, after 3 years, dialysis no longer conferred a survival advantage: HR 2.30 (95% CI 1.11 to 4.81) (figure 5)

Excluding patients with late referral to a nephrologist

Exclude patients with improved kidney function post-cohort entry

Figure 5. Kaplan-Meier survival curves

ACKNOWLEDGEMENTS

H.T. is supported by the Alberta Innovates – Graduate Studentship in Health and the Interdisciplinary Chronic Disease Collaboration

CONTACT INFORMATION

Helen Tam-Tham MSc, PhD Candidate, University of Calgary Room G236 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 T 1-403-210-6961 | E tamh@ucalgary.ca